You can use the OpenCV (Open Source Computer Vision Library) library to perform face detection in Python. OpenCV provides several pre-trained Haar classifiers for detecting various objects, including faces.
Here's an example code for face detection using OpenCV in Python:
import cv2 # Load the pre-trained Haar cascade classifier for face detection face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.XML) # Load the image to detect faces in img = cv2.imread('sample_image.jpg') # Convert the image to grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Detect faces in the grayscale image faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5) # Draw rectangles around the detected faces for (x, y, w, h) in faces: cv2.rectangleimageg, (x, y), (x+w, y+h), (0, 255, 0), 2) # Display the output image with detected faces cv2showw('Detected Faces', img) cv2.waitKey(0) cv2.destroyAllWindows()
detectMultiScale
method of the face cascade classifier to detect faces in the grayscale image. This method returns a list of rectangles, each corresponding to a detected face. We then draw rectangles around the detected faces using the cv2.rectangle
method. Finally, we display the output image with the detected faces using the cv2.imshow
method.
No comments:
Post a Comment